Optimal Approximation Orders in L P for Radial Basis Functions Holger Wendland
نویسنده
چکیده
Error estimates for radial basis function interpolation are usually based on the concept of native Hilbert spaces. We investigate how good the well known L p-error estimates are by giving lower bounds. Furthermore we study the process of best L 1-approximation and provide upper bounds for the approximation orders in this case.
منابع مشابه
Optimal Approximation Orders in Lp for Radial Basis Functions
We prove that the well known Lp-error estimates for radial basis function interpolation are optimal provided that the underlying function space is the native Hilbert space of the basis function. Furthermore we give upper bounds for the approximation orders in case of best L1-approximation using radial basis functions.
متن کاملError Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree
We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated \native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for fu...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملContinuous and discrete least-squares approximation by radial basis functions on spheres
In this paper we discuss Sobolev bounds on functions that vanish at scattered points on the n-sphereSn in Rn+1. The Sobolev spaces involved may have fractional as well as integer order.We then apply these results to obtain estimates for continuous and discrete least-squares surface fits via radial basis functions (RBFs). We also address a stabilization or regularization technique known as splin...
متن کاملMultiscale RBF collocation for solving PDEs on spheres
In this paper, we discuss multiscale radial basis function collocation methods for solving certain elliptic partial differential equations on the unit sphere. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. Two variants of the collocation method are considered (sometimes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000